按时间归档:2021年2月10日
-
函数方程相互换,最值交点解题妙
函数方程相互换,最值交点解题妙 三角分式求值域,斜率意义把题解 对于一个含有两个变量的等式
,一方面,可以看作方程,用方程的理论解决问题;令一方面,可以看… -
指数对数同时现,切线泰勒来放缩
指数对数同时现,切线泰勒来放缩 我们知道函数
在点 处的切线方程为 ,于是有不等式\({e^x} \ge x + 1… -
共点向量基底表,系数和移等和线
共点向量基底表,系数和移等和线 选定基底
,研究\(\overrightar… -
圆锥共线焦半径,其调和为半通径
圆锥共线焦半径,其调和为半通径 【引理】如图,已知
, , , , ,\(CE =… -
实际问题费思量,数学建模符号化
实际问题费思量,数学建模符号化。 北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于\(2\…
-
三角幂函遇指函,分母指函求导易
三角幂函遇指函,分母指函求导易。 【例】已知函数
,\(g(x) = {e^x} + \s… -
复杂递推求通项,归纳换元造零常
复杂递推求通项,归纳换元造零常。 【例题】已知各项都为正数的数列
满足 . … -
复杂条件先化简,等价转化思路明
复杂条件先化简,等价转化思路明。 【例题】已知函数
,若\(f(m)… -
椭圆三点定与动,所得三弦有联系
椭圆三点定与动,所得三弦有联系。 斜率之积为定值,定点对弦过定点; 斜积负一为特情,张直角弦过定点。 斜率和定非零时,定点对弦过定点; 斜率之和为零时,定点对弦斜率定。 设\(P(…
-
导函参变可分离,特殊一般来讨论
导函参变可分离,特殊一般来讨论。 解超不等造函数,单调零点把题解。 【例题】已知函数\(f(x) = \ln x + a{x^2} – (a + 2)x,a \in R…