极化恒等式:\( \vec{a}\bullet\vec{b}=\dfrac{(\vec{a}+\vec{b})^2-(\vec{a}-\vec{b})^2}{4} \)
设M是三角形ABC的边BC的中点,则
\( \overrightarrow{AB}\bullet\overrightarrow{AC}=\dfrac{(\overrightarrow{AB}+\overrightarrow{AC})^2-(\overrightarrow{AB}-\overrightarrow{AC})^2}{4}\)
\(=\dfrac{(2\overrightarrow{AM})^2-(\overrightarrow{CB})^2}{4}\)
\(=|\overrightarrow{AM}|^2-\dfrac{|BC|^2}{4} \)
若\( |\overrightarrow{BC}| \)为定值,则可以用来求\( \overrightarrow{AB}\bullet\overrightarrow{AC} \)的最值。
【例题】如图,在平面四边形ABCD中,\( AB\perp BC,AD\perp CD,\angle BAD=120^\circ, \)AB=AD=1,若点E为边CD上的动点,则\( \overrightarrow{AE}\bullet\overrightarrow{BE} \)的最小值为( )
A.\( \dfrac{21}{16} \) B.\( \dfrac{3}{2} \) C.\( \dfrac{25}{16} \) D.3
【解析】设O为AB的中点,过O作\( OM\perp CD \)于M,则\( |OM|=1+\dfrac{1}{4}=\dfrac{5}{4} \)
\( \overrightarrow{AE}\bullet\overrightarrow{BE}=\overrightarrow{EA}\bullet\overrightarrow{EB}=\dfrac{(\overrightarrow{EA}+\overrightarrow{EB})^2-(\overrightarrow{EA}-\overrightarrow{EB})^2}{4}\)
\(=\dfrac{(2\overrightarrow{EO})^2-(\overrightarrow{BA})^2}{4}\\=|\overrightarrow{EO}|^2-\dfrac{1}{4}\)
\(\geqslant|\overrightarrow{OM}|^2-\dfrac{1}{4}\\=(\dfrac{5}{4})^2-\dfrac{1}{4}\\=\dfrac{21}{4} \)
因此选A.
原创文章,作者:leopold,如若转载,请注明出处:https://www.math211.com/2021/02/10/57/