一、复数的三角形式:
\(z = r(\cos \theta + i\sin \theta )\)(\(r>0\)),\(z\)对应点\(Z(r\cos \theta ,r\sin \theta )\),对应向量\(\overrightarrow {OZ} = (r\cos \theta ,r\sin \theta )\),\(|z| = |\overrightarrow {OZ} | = r\)
若\({z_1} = {r_1}(\cos {\theta _1} + i\sin {\theta _1})\),\({z_2} = {r_2}(\cos {\theta _2} + i\sin {\theta _2})\),则
\({z_1}{z_2} = {r_1}{r_2}[\cos {\theta _1}\cos {\theta _2} – \sin {\theta _1}\sin {\theta _2} + i(\sin {\theta _1}\cos {\theta _2} + \cos {\theta _1}\sin {\theta _2})]\)
\( = {r_1}{r_2}[\cos ({\theta _1} + {\theta _2}) + i\sin ({\theta _1} + {\theta _2})]\)
其几何意义是:\({z_1}{z_2}\)表示把复数\({z_1}\)对应的向量\(\overrightarrow {O{Z_1}} \),绕\(O\)旋转\({\theta _2}\)(\({\theta _2}>0\):逆时针,\({\theta _2}<0\):顺时针),然后再伸长或缩短为原来\({r_2}\)倍得到的向量所对应的复数.可以用来处理旋转、伸缩变换有关问题。如\((1 + 2i) \cdot i = (1 + 2i) \cdot (\cos 90^\circ + i\sin 90^\circ )\)表示把向量\(\overrightarrow a = (1,2)\)沿逆时针旋转\(90^\circ \),长度不变.
同理可得到:\(\dfrac{{{r_1}(\cos {\theta _1} + i\sin {\theta _1})}}{{{r_2}(\cos {\theta _2} + i\sin {\theta _2})}} = \dfrac{{{r_1}}}{{{r_2}}}[\cos ({\theta _1} – {\theta _2}) + i\sin ({\theta _1} – {\theta _2})]\)
二、在解析几何中的应用
【例题】在平面直角坐标系\(xOy\)中,点\(P\)、\(Q\)分别为直线\(l:2x + y – 3 = 0\)与圆\(M:{(x – 2)^2} + {y^2} = {r^2}\)(\(r>0\))上的动点,若存在点\(P\)、\(Q\),使得\(\Delta OPQ\)是以\(O\)为直角顶点的等腰直角三角形,则\(r\)的取值范围为_____________.
【解析】设\(Q(x,y)\),其对应复数为\(x + yi\),
\((x + yi) \cdot (\cos{90^\circ}+i\sin{90^\circ})\)\(=(x + yi) \cdot i = – y + xi\),故\(P( – y,x)\)
代入\(2x + y – 3 = 0\)得\(Q\)的轨迹方程为\(x – 2y – 3 = 0\)
由于\(Q\)点在圆\(M:{(x – 2)^2} + {y^2} = {r^2}\)上
故\(d = \dfrac{{|2 – 0 – 3|}}{{\sqrt 5 }} \leqslant r\),解得\(r \geqslant \dfrac{{\sqrt 5 }}{5}\)
原创文章,作者:leopold,如若转载,请注明出处:https://www.math211.com/2021/02/10/65/