指数对数同时现,切线泰勒来放缩
我们知道函数\(y = {e^x}\)在点\((0,1)\)处的切线方程为\(y = x + 1\),于是有不等式\({e^x} \ge x + 1\),当且仅当\(x = 0\)时,等号成立.该不等式也可以由泰勒展式而得到,常见的带佩亚诺余项的泰勒展式有:
\(\begin{array}{l}
\dfrac{1}{{1 – x}} = 1 + x + {x^2} + \cdots + {x^n} + o({x^n})\\
{e^x} = 1 + x + \dfrac{1}{{2!}}{x^2} + \cdots + \dfrac{1}{{n!}}{x^n} + o({x^n})\\
\sin x = x – \dfrac{1}{{3!}}{x^3} + \dfrac{1}{{5!}}{x^5} + \cdots + {( – 1)^n}\dfrac{1}{{(2n + 1)!}}{x^{2n + 1}} + o({x^{2n + 1}})\\
\cos x = 1 – \dfrac{1}{{2!}}{x^2} + \dfrac{1}{{4!}}{x^4} + \cdots + {( – 1)^n}\dfrac{1}{{(2n)!}}{x^{2n}} + o({x^{2n}})\\
\ln (1 + x) = x – \dfrac{1}{2}{x^2} + \dfrac{1}{3}{x^3} + \cdots + {( – 1)^{n – 1}}\dfrac{1}{n}{x^n} + o({x^n})\\
{(1 + x)^\alpha } = 1 + \alpha x + \dfrac{{\alpha (\alpha – 1)}}{{2!}}{x^2} + \cdots + \dfrac{{\alpha (\alpha – 1) \cdots (\alpha – n + 1)}}{{n!}}{x^n} + o({x^n})
\end{array}\)
有许多高考题都是以泰勒展式为背景设计的,尤其是同时出现\({e^x}\)与\(\ln x\),常常可以用泰勒展式进行放缩,下面举例说明:
【例1】已知函数\(f(x) = {e^x} – ln(x + m)\).当\(m \le 2\)时,证明\(f(x)>0\).
【解析】当\(m \le 2\)时,\(\ln (x + m) \le \ln (x + 2)\),故\({e^x} – \ln (x + m) \ge {e^x} – \ln (x + 2)\)
要证\(f(x)>0\),只需证\({e^x} – \ln (x + 2)>0\),
方法一:令\(g(x) = {e^x} – \ln (x + 2)\)(\(x> – 2\)),则\(g'(x) = {e^x} – \dfrac{1}{{x + 2}}\)
注意到\(g'(x)\)在\(( – 2, + \infty )\)上单调递增,且\(g'( – 1) = \dfrac{1}{e} – 1<0\),\(g'(0) = 1 – \dfrac{1}{2}>0\)
由零点定理及单调性知
在\(( – 2, + \infty )\)上,\(g'(x)\)存在唯一零点\({x_0} \in ( – 1,0)\),且
当\( – 2<x<{x_0}\)时,\(g'(x)<0\),\(g(x)\)单调递减;
当\(x>{x_0}\)时,\(g'({x_0})>0\),\(g(x)\)单调递增.
\(\therefore g{(x)_{\min }} = g({x_0})\)
由于\(g'({x_0}) = 0\),故\({e^{{x_0}}} = \dfrac{1}{{{x_0} + 2}}\),\({x_0} = \ln \dfrac{1}{{{x_0} + 2}} = – \ln ({x_0} + 2)\)
所以\(g({x_0}) = {e^{{x_0}}} – \ln ({x_0} + 2) = \dfrac{1}{{{x_0} + 2}} + {x_0} = \dfrac{1}{{{x_0} + 2}} + {x_0} + 2 – 2\)
\( \ge 2\sqrt {\dfrac{1}{{{x_0} + 2}} \cdot ({x_0} + 2)} – 2 = 0\),当且仅当\({x_0} = – 1\)时等号成立
由于\( – 1<{x_0}<0\),故上述等号不成立,从而\(g{(x)_{\min }} = g({x_0})>0\)
即\(g(x)>0\)得证
方法二:令\(g(x) = {e^x} – (x + 1)\),则\(g'(x) = {e^x} – 1\)
注意到\(g'(x)\)在\(R\)上单调递增,且\(g'(0) = 0\)
故当\(x<0\)时,\(g'(x)<0\),\(g(x)\)单调递减;
当\(x>0\)时,\(g'(x)>0\),\(g(x)\)单调递增.
\(\therefore g(x) \ge g(0) = 0\),即\({e^x} \ge x + 1\)(当且仅当\(x = 0\)时取等号)(*)
用\(x + 1\)替换\(x\)得
\({e^{x + 1}} \ge x + 2\)(当且仅当\(x = – 1\)时取等号)
两边取对数得
\(x + 1 \ge \ln (x + 2)\)(当且仅当\(x = – 1\)时取等号)(**)
由(*)、(**)得\({e^x}>\ln (x + 2)\)(注意两个不等式取等号的条件不一样)
从而命题得证.
从上图可看出,\(y = x + 1\)是函数\(y = {e^x}\)与\(y = \ln (x + 2)\)的公切线.
【例2】已知函数\(f(x) = a{e^x} – lnx – 1\).证明:当\(a \ge \dfrac{1}{e}\)时,\(f(x) \ge 0\).
【解析】当\(a \ge \dfrac{1}{e}\)时,\(f(x) = a{e^x} – lnx – 1 \ge \dfrac{1}{e} \cdot {e^x} – \ln x – 1 = {e^{x – 1}} – \ln x – 1\)
要证\(f(x) \ge 0\),只需证\({e^{x – 1}} – \ln x – 1 \ge 0\)
由\({e^x} \ge x + 1\)(当且仅当\(x = 0\)时等号成立)得
\({e^{x – 1}} \ge x\)(当且仅当\(x = 1\)时等号成立)(***)
两边取对数得:\(x – 1 \ge \ln x\)(当且仅当\(x = 1\)时等号成立)(****)
由(***)、(****)相加得\({e^{x – 1}} – 1 \ge \ln x\),即\({e^{x – 1}} – \ln x – 1 \ge 0\)
【例3】已知函数\(f(x) = a{e^{x – 1}} – lnx + lna\).若\(f(x) \ge 1\),求\(a\)的取值范围.
【解析】由于\(f(x) \ge 1\)对\(x \in (0, + \infty )\)恒成立,故
当\(x = 1\)时,也成立,即\(f(1) \ge 1\),亦即\(a + \ln a – 1 \ge 0\)
令\(g(a) = a + \ln a – 1\),注意到\(g(a)\)在\((0, + \infty )\)上单调递增,且\(g(1) = 0\)
从而\(a + \ln a – 1 \ge 0 \Leftrightarrow g(a) \ge g(1) \Leftrightarrow a \ge 1\)
所以“\(a \ge 1\)”是“\(f(x) \ge 1\)恒成立”的必要条件
下面证明:\(a \ge 1\)”也是“\(f(x) \ge 1\)恒成立”的充分条件
当\(a \ge 1\)时,\(f(x) = a{e^{x – 1}} – lnx + lna \ge {e^{x – 1}} – \ln x\),
故只需证\({e^{x – 1}} – \ln x \ge 1\)
同【例2】的证法.
【反思】利用\({e^x} \ge x + 1\)及其变形形式来证明同时出现\({e^x}\)与\(\ln x\)的不等式是一种重要的方向,当然也有其它的方向.其中有\({e^x} \ge x + 1\)可以变化出下列不等式:
原创文章,作者:leopold,如若转载,请注明出处:https://www.math211.com/2021/02/10/92/