【题干】已知\(f(x)=xe^{ax}-e^{x}\).
(1)当\(a=1\)时,讨论\(f(x)\)的单调性;
(2)当\(x>0\)时,\(f(x)<-1\),求实数\(a\)的取值范围;
(3)设\(n\in \mathbf{N}^{*}\),证明:\(\dfrac{1}{{\sqrt {{1^2} + 1} }} + \dfrac{1}{{\sqrt {{2^2} + 2} }} + \cdots + \dfrac{1}{{\sqrt {{n^2} + n} }} > \ln (n + 1)\).
【解析】(1)\(\because a=1,\therefore f(x)=xe^{x}-e^{x},{f}'(x)=xe^{x}\)
第一小问导数正负容易判断,直接书写即可。
当\(x<0\)时,\({f}'(x)<0\);当\(x>0\)时,\({f}'(x)>0\)
故\(f(x)\)在\((-∞,0)\)上单调递减;在\((0,+∞)\)上单调递增
(2)\({f}'(x)=e^{ax}+axe^{ax}-e^{x}=e^{x}[(1+ax)e^{(a-1)x}-1]\)
注意观察是否有特殊情况,即导数大于零的情况,或导数小于零的情况。这里抓住\(x>0\)及\(e^{(a-1)x}\)来设计特殊情况:\(a\geqslant 1\)时有\(e^{(a-1)x}\geqslant 1\)
①(特殊情况)当\(a\geqslant 1\)时,\(1+ax>1,(a-1)x\geqslant 0,e^{(a-1)x}\geqslant 1,(1+ax)e^{(a-1)x}-1>0,\)
故当\(x>0\)时,\({f}'(x)>0,\therefore f(x)\)单调递增,\(\therefore f(x)>f(0)=-1,\)不满足题意,舍去
②(特殊情况)当\(a<0\)时,由于\(x>0\),故\((a-1)x<0\),\(0<e^{(a-1)x}<1\),
又\(1+ax<1,\therefore (1+ax)e^{(a-1)x}<e^{(a-1)x}<1\)
\(\therefore \)当\(x>0\)时,\({f}'(x)<0,f(x)\)单调递减,\(\therefore f(x)<f(0)=-1 \),满足题意
③(一般情况)当\(0 \leqslant a<1\)时,令\(g(x)=(1+ax)e^{(a-1)x}-1(x>0)\),
则\({g}'(x)=[2a-1+a(a-1)x]e^{(a-1)x}\)
对一般情况,无法直接判断导数正负,需局部构造函数,再求导。对于导数,再观察是否有特殊情况,根据\(a(a-1)x<0\)的条件,如果\(0\leqslant a \leqslant \frac{1}{2}\),则有\(2a-1+a(a-1)x<0\),这又是特殊情况,下面继续分特殊与一般讨论。
1°(特殊情况)当\(0 \leqslant a \leqslant \dfrac{1}{2}\)时,\({g}'(x)<0\),当\(x>0\)时,\(g(x)\)递减,\(\therefore g(x)<g(0)=0,\therefore {f}'(x)<0,\therefore f(x)\)递减,\(\therefore f(x)<f(0)=-1\),满足题意
2°(一般情况)当\(\dfrac{1}{2}<a<1\)时,令\({g}'(x)=0\)得\(x=\dfrac{1-2a}{a(a-1)}=x_{0}>0\)
故当\(0<x<x_{0}\)时,\({g}'(x)>0,\therefore g(x)\)递增,\(\therefore g(x)>g(0)=0,\therefore {f}'(x)>0,f(x)\)递增,\(\therefore f(x)>f(0)=-1\),不满足题意,舍去
综上所述,实数\(a\)的取值范围是\((-∞,\dfrac{1}{2}]\)
对于第三小问,高考题中第三小问一般不是孤立的,因此只要有用前一小问结论的想法就成功了。取\(a\)的端点值进行切入。
此处用到了一个思想方法:要证明“和”<“和”,只需证明“通项”<“通项”,令\(S_{n}=\ln(n+1)\),则通项\(b_{n}=S_{n}-S_{n-1}=\ln(n+1)-\ln{n}=\ln(1+\dfrac{1}{n})\),于是只需要证明:
\(\dfrac{1}{\sqrt{n²+n}}>\ln(1+\dfrac{1}{n})\)
(3)由(2)知,当\(a=\dfrac{1}{2}\)时,\(f(x)=xe^{\frac{1}{2}x}-e^{x}<-1\),
\(\therefore xe^{\frac{1}{2}x}<e^{x}-1,\therefore x<e^{\frac{1}{2}x}-\dfrac{1}{e^{\frac{1}{2}x}}\)
令\(t=e^{\frac{1}{2}x}\),则\(x=2\ln{t}\),故\(2\ln{t}<t-\dfrac{1}{t}\)
取\(t=\sqrt{1+\dfrac{1}{n}}\)得,\(2\ln(\sqrt{1+\dfrac{1}{n}})<\dfrac{\dfrac{1}{n}}{\sqrt{\dfrac{n+1}{n}}}\),
即\(\dfrac{1}{\sqrt{n²+n}}>\ln(1+\dfrac{1}{n})\)
\(\therefore \dfrac{1}{{\sqrt {{1^2} + 1} }} + \dfrac{1}{{\sqrt {{2^2} + 2} }} + \cdots + \dfrac{1}{{\sqrt {{n^2} + n} }}\)
\(>\ln{(1+\dfrac{1}{1})}+\ln{(1+\dfrac{1}{2})}+⋯+\ln{(1+\dfrac{1}{n})}\)
\(=(\ln2-\ln1)+(\ln3-\ln2)+⋯+[\ln(n+1)-\ln{n}]=\ln{(n+1)}\)
原创文章,作者:leopold,如若转载,请注明出处:https://www.math211.com/2022/06/07/520/