【2021年八省联考第7题】已知抛物线\(y^2=2px\)上三点\(A(2,2)、B、C,\)直线\(AB、AC\)是圆\((x-2)^2+y^2=1\)的两条切线,则直线\(BC\)的方程为( )
A.\(x+2y+1=0\) B.\(3x+6y+4=0\) C.\(2x+6y+3=0\) D.\(x+3y+2=0\)
【解析】首项发现本题的特殊性,即\(k_{AB}+k_{AC}=0\),可以得到直线\(BC\)的斜率为定值;其次利用过点\(A\)的两条直线与同一个圆相切,可以得到它们斜率的韦达式(斜率积),从而利用斜率双用可得到直线\(BC\)所经过的一个点。下面依次操作:
易知抛物线方程为\(y^2=2x\),设\(B(x_1,y_1),C(x_2,y_2)\)
(1)\(k_{AB}+k_{AC}=0⇒k_{BC}\)为定值
\(k_{BC}=\dfrac{y_1-y_2}{x_1-x_2}=\dfrac{y_1-y_2}{\dfrac{y_1^2}{2}-\dfrac{y_2^2}{2}}=\dfrac{2}{y_1+y_2}\)
\(∴k_{AB}=\dfrac{2}{y_1+2},k_{AC}=\dfrac{2}{y_2+2}\),
\(∴\dfrac{2}{y_1+2}+\dfrac{2}{y_2+2}=0⇒2(y_1+y_2)+8=0⇒y_1+y_2=-4\)
\(∴k_{BC}=-\dfrac{1}{2}\)
(2)设\(AB:y-2=k_1(x-2),AC:y-2=k_2(x-2)\),即\(AB:k_1x-y+2-2k_1=0\),根据直线与圆相切得
\(d=\dfrac{|2|}{\sqrt{k_1^2+1}}=1⇒k_1^2=3\),同理\(k_2^2=3\),故\(k_1k_2=-3\)
又\(k_1=\dfrac{y_1-2}{x_1-2}=\dfrac{2}{y_1+2},k_2=\dfrac{y_2-2}{x_2-2}=\dfrac{2}{y_2+2}\)
斜率双用\( \left\{ \begin{array}{ll} \dfrac{y_1-2}{x_1-2} \cdot \dfrac{2}{y_2+2}=-3 \\ \dfrac{y_2-2}{x_2-2} \cdot \dfrac{2}{y_1+2}=-3 \end{array} \right.\)
⇒\( \left\{ \begin{array}{ll} 2y_1-4=-3y_2x_1-6x_1+6y_2+12① \\ 2y_2-4=-3y_1x_2-6x_2+6y_1+12② \end{array} \right.\)
由\(①-②\)得\(-2(y_2-y_1)=3(y_1x_2-y_2x_1)+6(x_2-x_1)+6(y_2-y_1)\)
整理得:\(y_1x_2-y_2x_1=-2(x_2-x_1)-\dfrac{8}{3}(y_2-y_1)\)
又直线\(BC\)方程为:\(y_1x_2-y_2x_1=y(x_2-x_1)-x(y_2-y_1)\)
故直线\(BC\)过点\((\dfrac{8}{3},-2)\)
(3)直线\(BC\)方程为\(y+2=-\dfrac{1}{2}(x-\dfrac{8}{3})\),即\(3x+6y+4=0\)
故选B
原创文章,作者:leopold,如若转载,请注明出处:https://www.math211.com/2024/02/06/820/